
UNCLASSIFIED CO, 0(31 cop,.

AD-A 199 006 ii L<

IDA PAPER P-2061

RECOMMENDED SOFTWARE STANDARDS FOR USE BY
THE DEFENSE LOGISTICS AGENCY

David Carney

May 1988

Prepared for . . . E CT1
Defense Logistics Agency ! ft

INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria. Virginia 22311

UNCLASSIFIED IDA Log No. HO a7-032831...... **S~*~*f* .,, ,
.-. . ..-. ..".'- . ,...'- .- '- , .- "-,,. " '....',", . "-". -", .- . :.", - .- '--,'. .'.. . . .- ,.'. .,

DEFINITION
IDA publishes the following documents to repor the results of Its work.

-\ Reports
Raports are the most authorttadiv snd most carefully considered products IDA publishes.
They normally embody results of major projects which (a) hae a direct bearingi on decision
affecting major progrms, or (b) address Issues of significant concern to the Executive

.e Breach, One Congress and/or the public, or (r) address issues duat hav significant economic
Implications. IDA Reports are reviewed by outside panels of experts to ensre their high
quaity and relevances tirte problems studied, and they are relesed by the President of IDA.

Paper:
Paper normally address relatively restricted technical or policy Issues. They cmmunicate

.s thMe results of special analyses, Interim reports or phass of a task, ad hoe or quick reaction
% work. Popers arm reved to sure that they meat standards similar to thoue expected of

ON refereed papers In professional journals.

* Memorandum Reports
d IDA Memorandum Reports are used for the comnnenc of the sponsors or the analysts to

record substantdv work doe in quick reaction studies and major Interactv tlchnical support
activfi es; to make avallable preliminary and tentative results of analyse or of working

* -. ~~~~group and pane actvt; to lorward Information tha Is esently vnunaalzd andunv-
usted; or tomaka ecord of conferences, meetings, or briefings, or of date developed in

* ~the cours of an investigation. fRview of Memorandum Reports Is suited to their content
and Intended use.

The reslt of IDA work are also conveyed by briefings and Informal memoranda to sponsors
and olthers designated by the sponsors, when appropriate.

V ~ The work reported In this document wee conducted under centred MDA US U4 C 0031 for
the Department of Defense. The publication of this IDA document doss not Indicate endoes-
mont by the Department oM Defens, nor should the contents be construed us refleicting the

* - official position of that agency.[This paper bee been reviewed by IDA to ass tha it meets high standards of thoroughneoss,
objectivity, and sound analytical methodology and that the conclusions stem frem thre
methodology.

%I
I Apprevd for public release: distibution unlimited.F7I

r0. eee .e W
"I.,

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE /
Is REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

2b DECLASSIFICATION/DOWNGRADING SCHEDULE Public release/unlimited distribution.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

IDA Paper P-2061

6a NAME OF PERFORMING ORGANIZATION. 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

Institute for Defense Analyses IDA OUSDA, DIMO

6c ADDRESS (City, State, and Zip Code) 7b ADDRESS (City, State, and Zip Code)

1801 N. Beauregard St. 1801 N. Beauregard St.
Alexandria, VA 22311 Alexandria, VA 22311

Sa NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (it applicable)

Defense Logistics Agency DLA MDA 903 84 C 0031

Sc ADDRESS (City, State, and Zip Code) 10 SOURCE OF FUNDING NUMBERS

DLA-ZWS, 3A636 PROGRAM PROJECT TASK WORKUNIT

Cameron Station, Alexandria, VA 22304-6100 ELEMT ?JT NO. NO. NO. ACCESSION NO.
T-75-423

11 TITLE (Include Security Classification)

Recommended Software Standards for Use by the Defense Logistics Agency (U)
* 12 PERSONAL AUTHOR(S)

David Carney
13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Final FROM TO 1988 May 42

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse If necessary and identify by block number)

FIELD GROUP SUB-GROUP Software standards; Ada programming language; software configuration

management (SCM); portability; coding standards; prototyping.

q' , 19 ABSTRACT (Continue on reverse if necessary and identify by block number)

The purpose of this IDA Paper is to recommend a set of software standards for use by the Defense
Logistics Agency. These recommendations are related to the effort by the DLA to evaluate the Ada
progamming language as an Agency standard. The recommendations cover three areas of software
development: software configuration management (SCM), portability of Ada programs, and Ada coding

, standards. Although the principal scope of this paper is that of software standards and their potential use
by the DLA, many of its recommendations, principally those concerning coding standards and portability,
are derived from lessons learned during the earliest stages of the DLA Ada Prototype Project, which is
described in Section 3.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

[UNCLASSIFIED/UNLIMITED [] SAME AS RPT. [] DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include area code) 22c OFFICE SYMBOL
Audrey A. Hook (703) 824-55011 IDA/CSED

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete Unclassified

t.

4 UNCLASSIFIED

IDA PAPER P-2061

RECOMMENDED SOFTWARE STANDARDS FOR USE BY

THE DEFENSE LOGISTICS AGENCY

David Carney

6 "

May 1988 Aoc-- or -- o--

S j~iTIS GRA&I
DTIC TAB
Unannounced C
Justification

By
Distribution/

AvallPibi lity Codes
Avcii1 and/or-

1Dist
Special

I DA

INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 84 C 0031
Task T-T5-423

U 1,CLIAckebFICKD

* % ~%% ~

UNCLASSIFIED

CONTENTS

I. INTRODUCTION 1
1.1 PURPOSE............................
1.2 SCOPE...........................1
1.3 BACKGROUND........................2
1.4 APPROACH.........................3

2. FTNDINGS AND CONCLUSIONS....................5
2.1 SOFTWARE CONFIGURATION MANAGEMENT. 5

2.1.1 Discussion.........................5
* 2.1.2 Conclusions...................

2.2 PORTABILITY..........................6
2.2.1 Discussion.........................7
2.2.2 Conclusions.........................7

2.3 CODING STANDARDS.....................8
2.3.1 Discussion.........................8
2.3.2 Conclusions.........................8

3. RECOMMENDATIONS 11
3.1 SOFTWARE CONFIGURATION MANAGEMENT. 11
3.2 PORTABILITY.......................12
3.3 CODING STANDARDS.....................16

3.3.1 Naming Conventions 16
3.3.2 Packaging Conventions..........................22
3.3.3 Other Coding Conventions 25

4. SUMMARY 29

UNCLASSIFIED

UNCLASSIFIED

PREFACE

The purpose of IDA Paper P-2061, Recommended Software Standards for Use by the Defense

Logistics Agency, is to make available the findings and conclusions reached during the

preliminary stages of IDA task T-T5-423, Defense Logistics Information System. These findings

and conclusions take the form of recommendations in three areas of software development:

software configuration management (SCM), portability, and coding standards.

Reviewers of this document included: Bill Brykczynski, Audrey Hook, Joseph Linn,

Sm Katydean Price, Robert Winner, and James Wolfe.

'l

-o,

UNCLASSIFED
N

-5l'

*" NCLSSIIE

.L.-,

* 1. INTRODUCTION

1.1 PURPOSE

The purpose of this paper is to recommend a set of software standards for use by the

Defense Logistics Agency. These recommendations are related to the effort by DLA to

evaluate the Ada programming language as an Agency standard.

46 1.2 SCOPE

These rcconumend.tions cover three areas of software development: software

configuration management (SCM), portability of Ada programs, and Ada coding standards.

Recommendations in the first area are independent of any particular programming language.

The second area is one in which few standards have yet found widespread acceptance, and

the recommendations are only of a very general nature. The third area, Ada coding

standards, includes such issues as naming conventions, appropriate and inappropriate

statement types, and packaging conventions.

* Although the principal scope of this paper is that of software standards and their

potential use by DLA, many of its recommendations, principally those concerning coding

standards and portability, are derived from lessons learned during the earliest stages of the

DLA Ada Prototype Project described in Section 3. Among these experiences were the

attempt to erect a workbench of Ada tools and the on-going experiences gained from several

intensive Ada training sessions. The workbench experience is documented in IDA

Memorandum M-387, Compiling and Porting the NOSC Tools for Use by the Defense

Logistics Agency.

UNCLASSIFIED

'. V L -

UNCLASSIFIED

1.3 BACKGROUND

The Defense Logistics Agency is engaged in a long-term program, the Logistics Systems

Modernization Program (LSMP), to modernize its Automated Information Systems. A

principal thrust of the LSMP is to determine the feasibility of using the Ada language in DLA

* applications.

To that end, IDA and DLA are engaged in an Ada Prototype Prcject. This project

involves the creation of a preliminary Ada Programming Support Environment, training a

group of DLA programmers in the use of Ada, and the writing of large-scale software

projects to demonstfate Ada's capabilities. The functional nature of these demons-'ations

will be similar to that of the COBOL software currently in use at DLA. Since the project will

be distributed through three different machine tiers, an IBM, a Gould, and several Zenith

PCs, it will also demonstrate Ada's capacity for portability of software.

One principal requirement for the Prototype Project is an Ada Programming Support

Environment (APSE). The APSE is a "workbench" of Ada tools which can later be

expanded and modified as the modernization project itself is expanded and modified.

In IDA Memorandum Report M-294, Ada Prototype Project, it was recommended that

tools for the APSE be acquired by first examining public domain software before resorting to

4- commercially available software. A major source of public domain software is the

SIMTEL20 Repository, which contains a large number of available Ada programs. Many of

these were selected for potential inclusion in the DLA APSE. Since these tools were

5' commissioned by the Naval Ocean Systems Center, they are commonly referred to as the

NOSC tools.

2
UNCLASSIFIED

%"-
-

,. * . -. .5-V

UNCLASSIFIED

w

A team of DLA personnel was selected for training in Ada. Their collective expertise is

in COBOL, C, and Pascal, and most of the members are proficient in traditional Automated

1" Data Processing methodology. In addition, two of the team members have considerable

backgrounds in systems programming.

The team received six weeks of intensive training in Ada. The classes were given by

* personnel from TeleSoft, Inc., whose compiler will be used during the Prototype Project and

S".beyond. The textbooks for this course were:

* Software Engineering with Ada, Booch

" Reusable Software Components with Ada, Booch

" Understanding Concurrency in Ada, Kenneth Shumate

1.3 APPROACH

There are three different categories of recommendations in this paper, and they derive

* •from numerous sources:

" The trials of erecting the APSE, and the insurmountable difficulty of porting much of

it to DLA, were the sources of many of the recommendations concerning

configuration management and portability.

* Observing the DLA team's training sessions provided valuable insight into the the

type of coding standards and guidelines needed. In addition, many experiences of

the authors of some NOSC tools provided other coding recommendations.

" Finally, general experiences gained in using other Ada environments contributed to

some of the recommendations in all categories.

3
UNCLASSIFIED

-. . ..' *' ., . , -% - -. - .- -

UNCLASSIFIED

Section Two of this paper presents findings and conclusions based on these experiences.

Section Three presents recommendations and provides a rationale for each recommendation.

4

I

I

UNCLASSIFIED

"1A

45 45.4 . .

UNCLASSIFIED

0
2. FINDINGS AND CONCLUSIONS

Findings in the three areas of SCM, portability, and coding standards are discussed, and

6 conclusions in each area are presented.

* 2.1 SOFTWARE CONFIGURATION MANAGEMENT

Finding 1. Many of the NOSC tools chosen for the DLA APSE exist in multiple and incompatible

versions. This principally applies to the large tools.

Finding 2. The software environment at DLA presently has few tools to aid or enforce SCM.

Erection of a dependabie system will substantially impact the success of the entire Ada prototype

* project.

Finding 3. Major components of the SCIA system at DLA will need to include controls for multiple

*. versions of source files, mechanisms for standardized software releases, and management of

released object code.

2.1.1 Discussion

O Of the problems encountered in compiling the NOSC tools, those stemming from poor

SCM were the most difficult to solve. Principally, there were variant versions of many

packages, due to the fact that the SIMTEL20 sources reflect multiple releases of the tools.

-, The variants existed at different levels of software: some packages had been subsumed into

other packages, creating inconsistent dependencies. Others merely reflected earlier and

later versions of the same package. These difficulties were especially prominent in large tools

comprising many source files.

These problems were overcome with difficulty. It is noteworthy that IDA also had

available another version of some NOSC tools, obtained through GTE. While this other

555

UNCLASSIFIED

"""',--

,, UNCLASSIFIED

source of the tools added some confusion, it was only from the GTE versions that the needed

versions of some packages were found.

2.1.2 Conclusions

For a software project of any substance, there is need for a dependable SCM system.

Given the nature of Ada, where a basic intention is to achieve a high degree of modularity,

effective SCM is even more crucial. An acceptable SCM system will minimally contain a set

of protocols and standards for version and revision control, as well as a means to map the

correct version of source code to the object code. An acceptable SCM system will also

contain a reliable mechanism for tracking and documenting releases.

Additionally, an Ada project will need a mechanism that governs compilation of several

files. This entails determining the correct order of compilation as well as performing the

actual invocation of the compiler.

2.2 PORTABILITY

Finding 4. The NOSC toolset contains several tools that were written with non-validated compilers.

These tools will not compile with a valid compiler.

Finding 5. The majority of the tools examined contained system-dependent code. In the larger tools,

the dependencies were often dispersed through several packages, making them highly difficult to

- .r. port to other systems.

Finding 6. Even with these dependencies removed, the large NOSC tools could not be compiled

using the Gould compiler at DLA. One of the tools was eventually compiled by a considerable

- "reworking of the sources. The executable that was created failed in elaboration.

6
UNCLASSIFIED

"_,7

UNCLASSIFIED

2.2.1 Discussion

Of the PC-based tools examined, half have been successfully ported to DLA; of the

mainframe-sized tools, none. In the case of the failing PC-based tools a major cause was

poor or illegal code, due to use of non-validated compilers as development environments. In

the case of the mainframe-sized tools, it was due partially to overreliance on VAXt system

calls, and especially to a capacity limitation of the DLA Gould compiler. The attempt to

compile the NOSC tools is discussed in detail in IDA Memorandum Report M-387,

Compiling and Porting the NOSC Tools for use by the Defense Logistics Agency.

2.2.2 Conclusions

It is generally misleading to speak of truly "portabie" code; such software is relatively

rare. The term "portable" more often refers to code that needs only a small amount of

alteration in order to compile on different machines; portability is thus a measurement of

such alteration. Code which has a high degree of is a portability is code wherein the needed

alterations are easily made. Conversely, non-portable code requires complicated alterations,
0

or is written in such a way that the location where alterations are needed is not easily

determined.

It is also apparent that portability may be an issue over which the programmer has little

or no control. In the case of the NOSC tools, even though the Gould computer is a reasonably

large machine, its compiler was not able to compile code that had compiled without problem

on a VAX.

t VAX is a registered trademark of Digital Equipment Corporation.

7
UNCLASSIFIED

',

UNCLASSIFIED

Since one of the stated goals in the DLA Ada project is achieving software portability

through three machine tiers, this issue is fundamental; it is one of the prime points that the

project is meant to demonstrate. The DLA team must obviously regard portability as an

element that must be present at the earliest level of design, and not, as in the NOSC tools, as

a consideration after the code has been written. They should also be aware of the limitations.9.

of their compiler, and should be urged to design their code accordingly.

*. 2.3 CODING STANDARDS

Finding 7. The coding standard found in the course's textbooks represents only one possible

standard for good Ada code.

2.3.1 Discussion

Most of the DLA team members came to Ada from backgrounds in COBOL, and have

need of guidelines in writing Ada code. While the definition of an "Ada style" is, to some

extent, a matter of opinion, there is is a genuine need for some practical guidance in this

area.

At the present, the primary models available to the team members derive from the texts

used in the training sessions. In addition, the code for the NOSC tools provide a wide range

* of code quality and conventions. The code in the textbooks represents a particular kind of

coding style. This style is discussed in detail in Section Three. The code in the NOSC tools

ranged from unacceptable to excellent; the experiences of some of the NOSC tool authors

* .provided a source for some of the recommendations made later in this paper.

2.3.2 Conclusions

One of the fundamental aims of the Ada language is the writing of maintainable,

8
UNCLASSIFIED

0

I

UNCLASSIFIED

a

reusable code. As a means toward that end, it is vital that code be easily readable: in one
a

sense, readability is the hallmark of well-crafted code. Readability in this sense does not

refer to documentation, but rather to the actual compilable code. In particular, coding

practices that favor dense, abbreviated code are to be avoided.

Coding conventions are, in themselves, major contributors to code readability. Also,

* since Ada usually involves simultaneous references to multiple source files, any coding

conventions that simplify these references are beneficial; any that hamper it are poor.

9
UNCLASSIFIED

%

- .4 .,* 4~ U.~ ' -~% ~ ~~ s
% k~ U*U* U

UNCLASSIFIED

als

--

'a-

:.-.

"i-'

I,

'p

'a.
,,

*1lo

a, UNCLASSIFIED

,,-..Ka . - a. -a. a P... . .a - -. ,. - .-. a -... % -. *,, *._- ' ,*-,',* , ', ',

UNCLASSIFIED

3. RECOMMENDATIONS

There are three categories of recommendations: software configuration management

(SCM), portability, and coding standards. Five recommendations for SCM, four

recommendations for portability, and fifteen recommendations for coding standards are

presented.

3.1 SOFTWARE CONFIGURATION MANAGEMENT

1. Since the Gould computer will be the major development area, configuration management

protocols should be governed by the UNIX® operating system.

The eventual disposition of the Ada project through the three architectural tiers is not yet

determined. It is clear, however, that the Gould, using the UNIX operating system, will be

central to the project. UNIX also provides a foundation of language-independent tools that

partially offset the current absence of a true APSE.

2. The DLA team should be encouraged to use available SCM tools at every stage of the Ada

-iproject.

There are existing tools that have proven beneficial to SCM. UNIX's make and RCS

utilities are examples of them. (make is a tool that automates compilation of large systems,

and RCS is a revision control system for controlling changes to text files.) In addition to

encouraging use of tools such as these, other tools, such as mechanisms that automatically

generate makefiles, or that facilitate using RCS, should also be developed. Implementation

of these mechanisms has already begun.

3. A mechanism to permit orderly release of source files and executables should be developed.

The notion of "releasing" software is present when there are several programmers working

on interrelated code. There must be an orderly process that allows tested software to be

11

UNCLASSIFIED

V."j '.'' _.._;.,',,'. '',':',,.'.. ..-,." ". -¢," .-.. -M . ..:- . -. :-? L -. -: : -*%--

UNCLASSIFIED

used by others, but that permits a programmer continually to improve it. Such a process

depends on many factors: the released version of the source must be accessible; the

compiled code must be stored in a safe location, so that other users who rely on it can do so

indefinitely; and the mechanism whereby a release is made must be easily invoked so that it

will be used often.

4. A mechanism that tracks and documents releases should be developed.

The need for tracking releases is vital. It is often necessary, for instance, to rescind an

erroneous release, a process that involves reconstruction of an earlier configuration of the

system. Without a tracking mechanism, reconstruction of any particular system

configuration is likely to be impossible.

5. SCM standards for the DLA project should be adhered to by all team members without

exception.

-. Though notional agreement with this recommendation is probably near universal,

experience has shown that SCM standards are those that are followed the least. Experience

has also shown that lapses in this area are the most damaging. There are, for instance, costs

that can propagate far beyond the awareness of the developers. This point is amply

demonstrated by the NOSC tool experience.

One guideline for DLA in selecting its SCM standards is the ANSI/IEEE Std 828-1983,

Software Configuration Management Plans. It is recommended that the DLA team

investigate this document before making any specific decisions in the area of SCM.

"p. 3.2 PORTABILITY

1. For each given program, all system interface should be isolated in a single package.

'C- 12
UNCLASSIFIED

,",

UNCLASSIFIED

Software must communicate to the native operating system. In the case of code written for the

DEC Ada compiler, for instance, system calls are invoked through a package STARLET,

supplied by DEC. On UNIX systems, Pragma Interface(C) or Pragma Interface (UNIX)
S

perform similar roles.

Making such software portable involves isolating this communication in a single location. If the

* system-dependent code is distributed throughout several packages, then the code will port to

another machine only with difficulty.

When the software under consideration involves two or more executables, it is further

*" recommended that each have a separate interface package. This will help avoid a situation

encountered in the NOSC tools, where a system interface package was used by several

executables. The interface was changed for some, but not all of the executables, resulting in an

-* untenable set of package dependencies. Using a separate package for each executable ensures

a necessary independence of executable programs.

2. Reliance on constants that are system-dependent should be avoided.
S

Constants such as those found in package System concern capacities of the host compiler, such

as the degree of precision in real numbers. If code depends on a factor like this, then that code

is not really portable.

The following code will compile with the DEC Ada compiler, but will fail with some others:
7.

package ReaLNumbers is

type Big is digits 15;
- This will fail unless the
- value of System.Max_.Digits
- is at least 15

13
UNCLASSIFIED

UNCLASSIFIED

One possible alternative is:

4i with System;
package Real-Numbers is

type Big is digits System.MaxDigits;

But this solution is invalid if there is genuine need for the greater precision. In that case,

however, the code will always be erroneous on a smaller machine, and is not portable at all.

By contrast, the following code involves constants from package System, but does not depend

*on any particular values for them:

with Text.IO;
procedure Numbers is

package TO renames Text-JO;
max-size : constant Integer := (Integer'width) - 2;
number : Integer;
dummy :String (1.. 100);
len : Natural;

- this code will work regardless of
- the actual size of Max.Int.

begin
TIO.GetLine (dummy, len);
if len <= max-size then

number := Integer(dummy(1..len));
else

TIO.Put-Jine ("Input value too large");

. 3. Excepting generics, source files should contain a single compilation unit. In the case of generics,

source files should contain precisely one generic specification and one generic body.

d, When a source file contains more than one compilation unit and one of the units fails in

14
UNCLASSIFIED

02k

UNCLASSIFIED

compilation, different compilers will behave differently One possibility is for the compiler to

reject the entire compilation; that strategy is used by the Gould compiler. If the source file is

very long, with numerous compilation units, and the failure occurs at the very end of the

compilation, the wasted time can be considerable.

As a single exception to this recommendation, the Ada Language Reference Manual

(ANSI/MIL-STD 1815A) permits an implementation to require generic specifications and

bodies to share the same source file. Since the Gould compiler makes this requirement, then

generic compilation units should be the only occasion when one source file contains more than

one compilation unit. In such cases, the source file should contain no more than two units.

4i 4. Large arrays, those larger than 1000 elements, should be initialized by slice assignments and not

by a single aggregate assignment. If possible, such data structures should be avoided.

This recommendation stems from the principal reason that the large NOSC tools could not

" successfully compile at DLA. Several packages in the tools were automatically generated code,

containing large aggregates of integers. These aggregates were initialized by a single assignment

statement. In all cases, these packages failed to compile at DLA.

The solution in this case was to break the large aggregate assignment into smaller slice

assignment. Thereafter, one such package was successfully compiled. But the executable that
6
U.' was generated failed, and it is has not been determined whether the tools can be brought to

successful execution under any conditions.

- ,- It seems a safer course to recommend that the Ada style in packaging, i.e., small, modularI

' packages, be brought to bear on data structures as well. Otherwise, as in the NOSC tools, code

can be created which will compile successfully on one compiler and not on another, and there
-€

may be no possible way to port it because of capacity limitations.

U' 15
Il UNCLASSIFIED

,.. r , .

UNCLASSIFIED

3.3 CODING STANDARDS

This section contains recommendations about naming conventions, packaging

conventions, and other coding conventions.

3.3.1 Naming Conventions

1. The naming conventions that are established should be consistent throughout the entire

project, and used by all members.

This point is self-explanatory, but can not be overemphasized. Even if all of the following

recommendations are rejected, there is need for consistent naming conventions across the

0! project.

2. Whenever practical, use descriptive prefixes for subprograms, especially functions.

Subprograms are generally entities that "do" things, and the precise nature of what is done

should be clear from the subprogram's name. Prefixes like "Is-", "To.", "From.",

"Has-" and similar others, can provide this clarity:

"Is"
- for a function that returns a boolean

I." - result from making an identity test.

* "Has-"
- for a function that returns a boolean
- result from making an attribute test.

"From_",

S- for a function that converts a value into
- another value. Ile "From" prefix describes
- the precondition of the function; the "To."

U" - prefix describes the postcondition. The choice
, - is dependent upon the function's principal work.

r.',

16
UNCLASSIFIED

UNCLASSIFIED

While these prefixes deal with functions only, parallel examples for procedures are easily

imagined. As an example of the value of descriptive names, consider the lack of clarity in

the following specifications:

function Lower-Case (item : Character) return Character;
- This function returns a lower case character
- from an upper case character.

function Lower (item : Character) return Boolean;
- This function returns true if a character is
- in lower case.

These might typically be used as follows:

c : Character := 'Z';
* _begin

if not Lower(c) then --??lower than what??
c := Lower-Case (c);

A preferable, though more verbose, alternative is both self-documenting and consistent:
A'

function ToLowerCase (item : Character) return Character;
* function IsJLowerCase (item : Character) return Boolean;

c: Character :'Z';

begin

- conventional use of "is-"
- indicates a Boolean test

if not Is.LowerCase(c) then
c := ToLowerCase (c);

17
UNCLASSIFIED

. • . - , , - , . ° . . , - . - . '. .% A .A ,. , . . € , I t " g

'4. UNCLASSIFIED

Finally, if the appearance of "... not IsLowerCase" is offensive, then the following

addition:

function IsUpperCase (item : Character) return Boolean;

leads to:

if IsUpperCase(c) then
c := ToLowerCase (c);

3. Abbreviations should not be used in subprogram names. Wherever practical, subprogram

names should be entirely self-documenting.

.~ The semantic content of abbreviations is a highly subjective matter. While such

specifications as:

procedure Val (item : Item-Type);

will probably connote "Value" to most people, it is quite possible that

function Mat.mpy (matil, mat2 : MatType) return Mat-Type;

will not be meaningful except to its author. Changing this to

9%,

function Matrix.Multiply (
matrix.1,
matrix_2: Matrix..Type) return Matrix-Type;

results in a considerable increase in readability.
4-?

4. Naming conventions should be chosen so as to avoid unreadable code.

There are many viewpoints on good naming conventions, especially as regards names of

4:. types and objects. The DLA Ada team used texts by Booch and Shumate. Particularly in

18
UNCLASSIFIED

N .. N 0~. . .. , *' * ? A4 d . . '. d %q

* *', g/ ~ 'V ~ 444 A

UNCLASSIFIED

S

reference to the Booch texts, the DLA team should be made aware of some different points

of view.

There are several objections that can be made to the Booch style. First, since all objectsS

begin with the four characters "The-", there is an unwelcome element of sameness to each

object. And if there are several objects being manipulated in the code, or several fields of

the same record object, the result can be extremely awkward to read. The following is an

example:

if TheRing.TheBack = 0 then
raise Underflow;

elsif TheRing.TheBack = 1 then
The.Ring.TheTop := 0;
TheRing.TheBack := 0;

*" TheRing.TheMark := 0;
O(P else

TheRing .TheJtems(TheRing.TheTop..TheRing.TheBack-1):=
4 TheRing.The.Items(The_Ring.TheTop + 1)..The.Ring.TheBack);

The-Ring.The-Back := TheRing.TheBack - 1;
if TheRing.The.Mark > The-Ring.TheTop then
TheRing.The__Mark := The_.Ring.The..Mark - 1;

* end if;

(Booch, p. 185)

Another weakness in the above convention is that when two objects of the same type are

4 used, they are distinguished by prepositions, commonly "To" and "From". But the use of

these is incorrect as regards common English meaning. As an example:

for Index in FromThe_..Map.TheItems'Range loop
.* if FromThe_.Map.TheJtems(Index).TheState = Bound then

Find (FronThe..Map.Thejtems(Index).The. Domain,
*: ToThe._Map, The-Bucket);

(Booch, p.230)

19
UNCLASSIFIED4

* a . - . - . -. . - . - . ' . - N . a S a S N S ,

UNCLASSIFIED

The intended meaning here is to distinguish between a "to" map and a "from" map, one a

- source and one a destiiation. But in simple English, using "...to the x...from the x..."

commonly refers to the same "x". To be consistent with English *.ge, it would need to

read: "TheToMap ... TheFrom-Map", at which point Lommon sense rebels.

5. Wherever practical, use descriptive suffixes to denote common data types.

It is undoubtedly a good practice to separate type names from variable names; that is an

obvious intent of the conventions discussed in Recommendation 4. But a better way to

achieve that goal is to place a descriptive suffix on the type, rather than an article on each

-. , variable. By using such suffixes as:

ptr"- for access types.
"_rec" - for record types.
"_arr" - for array types.

"-type" - for enumeration types.

the following code:

"-'. type Colo-Type is (red, white, blue);
type ColorPtr is access Color-Type;
color : Color.Ptr;

color := new ColorType'(red);
if color.all/= blue then

" will be both clear and succinct. It should be noted that using abbreviated suffixes on types,

unlike abbreviations for the nouns or verbs in subprogram names (cf. Recommendation 3) is

an acceptable practice, since suffixes indicate on'y typical data types such as arrays,

records, and pointers.

20
UNCLASSIFIED

I
w

UNCLASSIFIED

6. Use simple names (without prefix or suffix) to denote variables.

Generally, type names are used once, variables names several times. The descriptive prefix

or suffix should be used at the point where the type needs to be discerned, nowhere else. Of

the following two examples, the first is preferable:

type Node;
type Node_.Ptr is access Node;

* "type QueueRec is
record

Front : NodePtr;
Back : NodePtr;

end record;

procedure Copy (
From : in QueueRec;
To : in out QueueRec) is

if From.Front - null then
To.Front := null;
To.Back := null;

21
4 UNCLASSIFIED

% 1w
,

1

. UNCLASSIFIED

type Node;
type Structure is access Node;
type Queue is
record

The-Front: Structure;
The-Back Structure;

end record;

procedure Copy (
From-TheQueue: in Queue;
ToTheQueue : in out Queue) is

if FromTheQueue.TheFront = null then
ToTheQueue.The-Front := null;

-~.' To-TheQueue.The.Back := null;

(Booch, p.149)

3.3.2 Packaging Conventions

1. Subprograms, whether functions or procedure, should be brief; each should accomplish a

single action.

One of the hallmarks of the Ada style is a high degree of modularization, with the

restriction of a subprogram to a single action. The benefits of this are twofold: first, since

the subprogram has only one effect, it can subsequently be reused in a variety of contexts.

Second, the code of such a subprogram will necessarily prevent the dense, unmanageable

code that Ada was intended to avoid.

As a simple means to achieve this goal, it is further recommended that a typical subprogram

be restricted to a very few lines of-code. An upward limit is difficult to determine, but a

subprogram that is larger than fifty lines is probably too long.

Some subprograms will perforce violate this recommendation; sometimes such things as a

• very lengthy case statement are the best solution to a particular problem. But in the general

22
UNCLASSIFIED

0:.

UNCLASSIFIED

order, this recommendation can restrict these occasions to a minimum, and can also

enforce a logical rigor conducive to good software engineering practice.

2. Wherever possible, subprograms should have no side effects. All effects of a subprogram

should be centered on parameters.

The principal way that a subprogram can have a side effect is by acting on global variables.

"*' Global variables are generally avoided by modern software engineering practices, and an

Ada programming style should generally follow this practice.

3. The number of parameters for subprograms should rarely if ever exceed six.

This is related to recommendation 1 concerning single-action subprograms. If a

subprogram genuinely has need of many parameters, it is worth considering whether the

* chosen data structures are appropriate. A common possibility is that the several parameters

can be collected into a single record type, and passed in as a single parameter. If this is not

appropriate it is then worth considering if the action of the subprogram is itself appropriate,

or whether the subprogram is really doing the work of several procedures.

4. Wherever possible, variables should not appear in package specifications. Variables whose life

. span must exceed a given subprogram call should lie in package bodies.

The presence of variables in specifications is closely related to recommendation 2

concerning the danger of side effects. A variable in a specification is vulnerable to all units

that 'with' the package. The package body is the appropriate location for variables whose

life span must exceed a given subprogram call, since only the package's own subprograms

may alter such variables.

5. Constants in package specifications should be replaced by parameterless functions.

4

23
4 UNCLASSIFIED

UNCLASSIFIED

The presence of a constant in a specification is always subject to the danger that the

constant will need to be changed and the package recompiled, thus rendering all dependent

units obsolete. The effect of a visible constant can be gained without this risk by using a

parameterless function to return the constant value. The second version below is preferable

to the first:

package Data is

IntValue : constant Integer:= 100;

package Data is

fanction hLtValue return Integer;

The actual integer value is then located in the package body, which can be altered and

. recompiled with no other dependencies involved. Note that any calling program that uses

this value does so with precisely the same code for both versions:

with Data;
procedure Do-Something is

x := Data.IntValue;

6. Wherever possible, avoid 3abunits.

Most of the asserted benefits of subunits are imaginary. Though textbook examples of

development, where a body is stubbed out and the subunits developed one by one, look

quite reasonable, experiences by many Ada programmers suggest that such neat sequences

24
UNCLASSIFIED

.I - -*5 I -ZI

* UNCLASSIFIED

of development seldom occur.

This recommendation is potentially controversial, since textbooks generally urge the

frequent use of subunits. But it is the author's experience in various Ada projects that

programmers in large numbers come to avoid subunits except in the most exceptional

circumstances.

*I 3.1.3 Other Coding Conventions

1. Avoid unnecessary WITH clauses in specifications.

It is not uncommon to include a WITH clause in a package specification even if the 'withed'

6 unit is not referenced until the body. Except for the predefined units such as TextIO, this

practice can have unfortunate results. Principally, it will add unnecessary dependencies,

which in turn will trigger unnecessary recompilations throughout the development phase. In

addition, such a practice is a mark of poor engineering standards.

2. Use USE clauses seldom if at all.

- 9The principal objection to the USE clause is that it obscures the location of declarations

from the reader of the code. Using USE is not the same as 'information hiding': on the

contrary, USE hides valuable information from a person who might desperately need the

information that is hidden.

There are only two reasons that USE clauses might be justified:

"U- " To avoid cumbersome code filled with dot-selected identifiers.
4

" To gain visibility of equality and inequality.

In the first case, it is often a better practice to use package renames, which simplify the

• _appearance of the code and still allow the reader to locate references. As an example, the

25
I UNCLASSIFIED

-- - - -

UNCLASSIFIED

'.

second fragment below is preferable to the first:

with A-Types, BTypes, CTypes;
use A.Types, B-Types, CTypes;
package Data is

var1 : Color := gray;
var.2 : Shade := Initialize;
var_3 : Hue := Initialize (var-1);
var_4 ;Hue := Initialize;

* with A-Types, BTypes, CTypes;
package Data is

package A renames A-Types;
package B renames BTypes;
package C renames CTypes;

var.l : A.Color := A.gray;
var2 : B.Shade := B.Initialize;
var..3 : C.Hue := C.Initialize (var1);
vat_4 : C.Hue := B.Initialize;

It is also worth noting that the USE version obscures the fact that var_3 and var_4 are

initialized by functions in different packages, a point that is explicit in the second version.

The second reason to add a USE clause is to gain the visibility of the equality operator. In

such cases, the following are possible alternatives:

- a. If the equality visibility is needed only once, then the "-" notation is not a terrible

*. inconvenience.

UNCLASSIFIED

5$OYU

UNCLASSIFIED

with DataTypes;
package body Something is

package DT renames Data._Types;

procedure Do-Something is
x: DT.AnyKind;

begin
x:= Some-Function;

- this is the only time
- the "=" is needed

if DT."=" (x,DT.red) then ...

b. If the visibility is only needed within a single procedure, then the USE clause can also be

located there, as in the following example:

with Data-Types;
package body Something is

procedure Do-Something is
x: DataLypes.AnyKind;

- AnyKind is defined
- in package DataTypes

use Data.I.ypes;
S- USE clause is in effect

- only within this procedure
begin

x := Some-Function;
if x = red then ...

Note also that the USE clause appears only after the declaration of variables: the location

of type 'AnyKind' is not hidden by USE.

3. Exceptions should be used only for true run-time error conditions. They should not be used

for recovering from expected conditions.

In most compiler implementations, exceptions have a high overhead. Further, the intended

use of exceptions in the design of Ada was not to include any message-passing functionality,

27
UNCLASSIFIED

- - -

.UNCLASSIFIED

but only to provide a means to recover from runtime errors.

For instance, consider the following:

function Calculate (x : Integer) return Integer is
begin
.... - do some useful computation with x

return x;
exception

when Constraint-Error => return 10_000-000;
- set x to 10_000_000 whenever the
- computation exceeds MaxInt

end Calculate;

Code such as this is using the exception handling mechanism of Ada to test boundary

conditions of the in parameter. This is the type of test that might better be made in the code

instead, if at all possible:

function Calculate (x : Integer) return Integer is
subtype Acceptable-Range is Integer range <some acceptable range>;

begin
.: :if not (x in Acceptable.Range) then

return 10-000_000;
else
.... -do some useful computation with x

end if;
return x;

end Calculate;

28
UNCLASSIFIED

N

UNCLASSIFIED

4. SUMMARY

The standards enumerated in this paper are based on lessons learned when COBOL

programmers at the Defense Logistics Agency were making a transition to Ada. There is no

iitention to cover all possible areas, but rather to focus on the standards most commonly

needed by experienced programmers making such a transition. These standards should

0 therefore be regarded as a starting point, over which a fuller set of agency-wide standards

can be erected. The full complement of DLA software standards can and should be

perceived as being a major contribution by the Ada Prototype Project to the eventual success

of DLA's Logistics Systems Modernization Plan.

The matter of standards should not be thought of as "elementary," or an issue for

novices only. The need for consistent, sensible standards in modern software engineering is

indisputable. Especially given the robable scope of projects written in Ada, there can be

little doubt that ad hoc, on-the-spot conventions and standards will be detrimental factors in

* any project's success. From both an engineering and a management viewpoint, the more a

project is bound to a uniform, common-sense set of software standards, the more the

members of that project are free to focus their energy on the real problems - designs,

algorithms, optimizations, abstractions - that face software engineering.

29
UNCLASSIFIED

: UNCLASSIFIED

4.

i'

-- m4~

--V.

%"

UNLSSFE

UNCLASSIFIED

BIBLIOGRAPHY

o O Gardner, M.R., R.L. Hutchison, & T.P Reagan. "A Portability Study Based on Rehosting

WIS Ada Tools to Several Environments." McLean, VA: The MITRE Corporation,

1986. Photocopied.

Nissen, J.C.D. & Peter J.L. Wallis. Portability and Style in Ada. Cambridge: Cambridge

University Press, 1984.

SotTech, Inc. "Ada Portability Guidelines." Waltham, MA: SofTech, Inc., 1984.

Tracz, Will. "Ada Reusability Efforts: A Survey of the State of the Practice." Stanford, CA:

Computer Systems Laboratory, Stanford University, 1987. Photocopied.

31
* UNCLASSIFIED

40 Distribution List for IDA Paper P-2061

NAME AND ADDRESS NUMBER OF COPIES

Sponsor

Ms. Sally Barnes 2 copies
DLA-ZWS, 3A636
Cameron Station
Alexandria, VA 22304-6100

Other

Defense Technical Information Center 2 copies

Cameron Station
Alexandria, VA 22314

Mr. Ken Bowles 1 copy
TeleSoft
5959 Cornerstone Court West
San Diego, CA 92121-9891

Mr. Tim Brass 1 copy
Defense Logistics Agency

O 3990 East Broad Street
Columbus, OH 43216-5002

Ms. Tricia Oberndorf 1 copy
Naval Ocean Systems Center
Code 425

* San Diego, CA 92152-5000

CSED Review Panel

Dr. Dan Alpert, Director 1 copy
Center for Advanced Study
University of Illinois
912 W. Illinois Street
Urbana, Illinois 61801

Dr. Barry W. Boehm 1 copy
TRW Defense Systems Group
MS 2-2304
One Space Park
Redondo Beach, CA 90278

Dr. Ruth Davis 1 copy
The Pymnatuning Group, Inc.
2000 N. 15th Street, Suite 707
Arlington, VA 22201

I f 0 " ' 4

NAME AND ADDRESS NUMBER OF COPIES

Dr. Larry E. Druffel 1 copy
Software Engineering Institute
Shadyside Place
480 South Aiken Av.
Pittsburgh, PA 15231

Dr. C.E. Hutchinson, Dean 1 copy
Thayer School of Engineering
Dartmouth College
Hanover, NH 03755

Mr. A.J. Jordano I copy
Manager, Systems & Software
Engineering Headquarters
Federal Systems Division
6600 Rockledge Dr.
Bethesda, MD 20817

Mr. Robert K. Lehto 1 copy
Mainstay

,: 302 MWl St.

Occoquan, VA 22125

Mr. Oliver Selfridge 1 copy
45 Percy Road
Lexington, MA 02173

IDA

General W.Y. Smith, HQ 1 copy
Mr. Philip Major, HQ 1 copy
Dr. Jack Kramer, CSED 1 copy
Dr. Robert I. Winner, CSED 1 copy
Dr. John Salasin, CSED 1 copy
Ms. Anne Douville, CSED 1 copy
Mr. Terry Mayfield, CSED 1 copy
Dr. David Carney, CSED 2 copies
Ms. Audrey A. Hook, CSED 1 copy
Mr. Richard Waychoff, CSED 1 copy
Ms. Katydean Price, CSED 2 copies
IDA Control & Distribution Vault 3 copies

&g g

